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NOISE MAXIMUM SNR

RICCARDO PAVESI

1. THEORY

All pixels in a noise cube have a Gaussian probabil-
ity distribution function centered at 0 and let us take
the variance to be normalized (SNR cubes). First, note
that the distribution of all pixels, which is a realization
of many short-scale correlated random variables X,,, is
not exactly the same as the PDF for each pixel, but is
very close because correlation takes place on short scales
(beam size). So note that the pixel distribution is very
close to Gaussian, with normalization equal to the total
number of pixels. This would, at first sight, imply that
the high tail end (i.e. the SNR of the highest pixel) is go-
ing to depend on the number of pixels in a beam, which
cannot be true (in fact it is not, but the reason is subtle,
the pixel distribution tail is where the difference from
correlations shows up, but it is only an effect of ~ 5% or
less in the maximum SNR, for large cubes).

So we look at the distribution of the maximum value
for a correlated Gaussian field in a finite region, following
Colombi et al.| (2011]). We are going to work in the regime
of high SNR thresholds (significantly >1), and the regime
where peaks above these thresholds are far enough that
they do not feel any residual correlation from the pres-
ence of a finite beam.

The cumulative probability distribution function for
the maximal value of the field in a region (i.e., the prob-
ability that the maximum of the field in the region is
below a certain value) is the same as the probability
of having no peaks above that same threshold in the
given region. Under the previous simplifying conditions,
the problem simplifies then, to a Poisson point process
where there is a surface (volume) density of peaks (con-
ditional to be above a given SNR) and the probability
of finding N peaks (above a specified threshold) in the
region is given by a Poisson distribution with expecta-
tion equal to the area (volume) of the region multiplied
by the number density of peaks. Then, the cumulative
function of interest is then the Poisson probability of
finding 0 peaks above the given threshold (equivalent to
saying that the maximum is below this threshold), i.e.,
Poisson(0[nV) = e~V

The peak density, conditional to lie above a fixed
threshold, was calculated by Bardeen et al. (1986) for
the 3D case and |Bond et al.| (1987) for the 2D case, and
they are summarized by |Colombi et al.| (2011). Following
the definitions of Colombi et al.| (2011)), we use (L/l)” to
represent the “number of independent elements” here de-
fined. The setup is such that the field region under study
is a D-dim ball of radius L, and [ represents the standard
deviation of the isotropic Gaussian “beam” (the size of
the Gaussian used to smooth the “original” white noise).
Then the formulae for the cumulative distribution func-
tion for the field maximum are:

P(VUmae < V) ~ exp[—0.10 (L/1)* vexp(—v?/2)] (1)

in 2D, and in 3D:

P(Vmaz < V) ~ exp[—0.0375 (L/1)? (v* — 1) exp(—1?/2)]

(2)
Where v is the SNR field threshold. The terms inside
the exponential are the region volume multiplied by the
peak number density.

2. RESULTS

There are two ways to look at the problem for interfer-
ometric line searches in data cubes. The first way is to
just look at the starting data (SNR) cube. This has in-
dependent channels, and spatial noise correlation on the
scale of the beam. To calculate the probability distri-
bution of the highest noise contaminant (one realization
also provided by looking at the negatives and minima,
since noise is symmetric around 0) we then use the 2D
formula, and consider the equivalent area which corre-
sponds to the total area of putting all the channel maps
together (since noise is uncorrelated, so we just add the
region area). Hence set [ to the standard deviation of the
beam, and 7 L? = Achan Nehans, where Agpan is the area
in each channel map. Nepgns ~ 2000 in our cubes, and
Acnan =112267 pixels for COSMOS and 687260 pixels for
GN (pixel size=0.5"). The beam FWHM can be taken
to be approximately ~ 2.5” (this is an important source
of uncertainty in this estimate) implying std. of 2.1 pix-
els. The “effective area”, total area divided by beam
area (circular beam of radius equal to std), (L/l)?, in
independent elements is 1.6 x 107 for COSMOS and 108
for GOODS-N. For COSMOS then the 16th, 50th and
84th percentiles are (5.55, 5.73, 5.97) and for GOODS-
N (5.88, 6.05, 6.28). The measured values are -5.91 for
COSMOS and -6.07 for GOODS-N in the N-mosaic, ex-
actly as expected (and lower in the S-moisac, as expected
due to additional smoothing).

The second way to use these formulae is the 3D view,
and considering a cube that was convolved (MF3D-style)
both spatially and/or in frequency to consider noise
peaks which contaminate the search for signal line candi-
dates. The volume of the correlation element (3D version
of the beam, i.e., simply template width along the spec-
tral dimension) is measured in the various dimensions us-
ing the appropriate unit of the correlation length in that
dimension. For example, if we consider the cube with no
spatial convolving (point source search) and a frequency
FWHM of 4 channels (~ 140 km/s; std of 1.7 channels),
then the total volume in “independent elements”, de-
noted (L/1)3 in the formula above, is the ellipsoid vol-
ume in units of “effective beam” standard deviations (i.e.,
product of the standard deviations along the 3 axes, di-
vided by 4/3m): 9.5 x 10° for COSMOS and 5.8 x 107
for GOODS-N. Resulting in percentiles on the max SNR
of (5.58, 5.76, 6.01) for COSMOS and (5.92, 6.09, 6.32)
for GOODS-N. We measure -5.72 for COSMOS and -5.81
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Figure 1. Probability distribution functions for the max SNR due to noise in the 2D and 3D cases. Blue curve for COSMOS, green for

GOODS-N.
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Figure 2. How many more “effective” independent elements determine the extent of the noise tail, relative to the naive number of

elements, as a function of the naive number of elements.

for GOODS-N in the (-1,4) MF cubes. The GOODS-N
peak is not as high as we might expect, and may suggest
that the beam counting may not be quite correct, but
close (also counsider the effect of having ruled out, with
additional data, the most significant negative feature as
a formaldehyde absorption candidate). The highest neg-
ative line of the full MF3D is just the max over all the
templates, and is in the same range (broader frequency
templates have somewhat lower peak, as might be ex-
pected as they reduce the number of channels more sig-
nificantly). Although it might appear that the difference
between 5 and 60 in a Gaussian tail might be large, the
value of the maximum in a large cube is actually not well
predicted, i.e., the tails are intrinsically subject to large
fluctuations. We also note that the difference between
SNR=5.7 and 5.8 is only < 2% and that at this small
level of difference the discrete pixel sampling of the noise
field may also potentially alter values slightly (it is not
quite the peak of a continuous distribution that we will
ever see, but some pixel samples), but we do not expect
systematic shifts from this.

3. DISCUSSION

Let us consider the case of no pixel correlation (IID)
ﬁrl%ti The cumulative distribution for the maximum is
P, where Popr is the individual pixel CDF. Take
Npiz = 107, then the usual 16th, 50th, 84th per-
centiles (i.e., probabilities that the maximum will be less
than these SNR thresholds) are (5.07, 5.27, 5.51), and

Npiw*(1-Pepr(]5.07,5.27,5.51]))=[1.86,0.69,0.18]. these
are the expected number of of pixels with SNR> thresh-
old. Poisson expectations of p =[1.86,0.69,0.18] ex-
actly imply that [16%,50%, 84%)] of the cases will re-
turn 0 and the remaining will return > 0 pixels with
SNR>threshold, as expected.

Therefore, by comparing the calculated percentiles for
the max SNR in the correlated case we can compute the
“effective number of independent elements”, which is the
number of independent variables you would need, in or-
der to reproduce such noise tails.

In the 2D case, we get for COSMOS 1.3-1.5x108
and for GOODS-N 9.1-11x108, which are 8-9x and 9-
11x the previously defined “number of independent ele-
ments”. In the 3D case, we get for COSMOS 1.5-1.9x108
and for GOODS-N 1.16-1.4x10%, which are 16-20x and
20-24x the previously defined “number of elements”,
showing that the naive estimate would greatly un-
derestimate the extent of the noise tail. The more
numerous the independent elements, the larger
the effective number of independent elements (to
the tail) becomes, relative to the naive counting.
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