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1 Introduction

The EVLA was used to observe the COSMOS extragalactic deep-�eld during the spring
of 2013 (project VLA/13A-398; PI: Riechers). The purpose of these observations is a
blind search for CO emission lines at high redshift. A seven pointing mosaic was obtained
with 8 GHz of total bandwidth in the Ka-band, the radio quasar J1041+0610 was used
as phase calibrator and 3C286 for bandpass and �ux calibration. The correlator is set up
to provide 64 spectral windows of 128 MHz bandwidth each, divided into 2 MHz wide
channels, covering a frequency range of 30.988�39.036 GHz. Three frequency tunings
o�set in steps of 12 MHz were adopted to cover the gaps between spectral windows and
obtain uninterrupted bandwidth. Our dataset is composed of 46 dynamically scheduled
observing tracks between 2013, January 26 and May 14, each about 3 hours in duration.
The calibration is carried out using the EVLA data reduction pipeline (v.1.2.0) devel-
oped using CASA 4.1.0. The pipeline RFI �agging, which uses CASA rflag to identify
transient lines, was switched o� as recommended by the developers because it can poten-
tially remove narrow spectral lines and because there is little RFI in the Ka-band (with
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the exception of the 31.487�31.489 GHz range which we �ag prior to running the CASA
pipeline). The pipeline was further modi�ed to only �ag the �rst and last channel of
each spectral window (instead of 3 channels) regardless of proximity to baseband edges
to minimize the gap between bands. We �nd that the bandpass is su�ciently �at that
this choice gives the best trade-o� between bandwidth and introduced distortion. After
executing the pipeline we visually inspect the calibrator �elds to identify any necessary
additional �agging, and then re-execute the �nal calibrations.
Since the purpose of our study is a blind search for spectral line emission, we performed
a careful inspection of the noise as a function of frequency on the calibrators and source
since signi�cant variations would a�ect the identi�cation of faint lines.

2 The Identification of High-noise Channels

We report a signi�cant number of noisy spectral channels in our observations that are not
removed by the calibration pipeline. The noisy channels were initially identi�ed as narrow
spikes of a small number of channels in amplitude vs. frequency plots of visibilities from
the science target �elds (Figs. 2.1, 2.2) and are mostly associated with single antennas
(Fig. 2.3).
In the example shown in Fig. 2.4 we can see that the problematic channel has higher
noise than the neighbouring channel throughout the observation. However, the di�erence
in noise for the a�ected channels decreases during observations of calibration targets.
Being very narrow in frequency, the noise spikes are not signi�cantly reduced by the
statistical weights obtained from statwt, which minimizes the e�ects of all other noise
features since the weights are computed per spectral window.
Including one of these noisy channels for the a�ected antenna during the imaging of a
single pointing of the mosaic from a single observation track increases the rms noise by
∼ 20% in that frequency channel. Depending on how frequently these high-noise channels
occur, they may signi�cantly a�ect our ability to perform blind line searches.

3 Characterisation and Removal of the High-noise

Channels

In order to better characterise the noise spikes, we compare channel-to-channel vari-
ations in the noise within each spectral window for each antenna, treating each �eld
separately. We select the noise spikes in the statistically weighted calibrated data, but
the problematic channels are already apparent in the raw data.
For our comparison we select problematic channels as those whose standard deviation of
the visibility amplitudes is more than 3σ greater than the mean standard deviation in
that antenna for that spectral window. Fig. 3.1 shows a histogram of occurrences, with
the abscissa given by the number of observations (out of 46) where a particular channel
had a noise spike in a particular antenna. We exclude the �rst channel for all spectral
windows since it is always more noisy, and ignore noise spikes that occur only once. This
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plot shows that many noisy channels in the same antenna repeat over time, and would
therefore be problematic if left in the datacube.
In Fig. 3.2 we display the spectral window distribution of those same noise spikes, selected
as described above. We see a concentration of noise spikes in roughly four peaks, which
correlate with peaks in the weighted calibrated amplitudes as a function of frequency. We
consider this to be indicative of random electronic problems that manifest as increased
noise and thus are more prevalent in certain hardware components of the correlator than
others. The presence of four peaks is likely associated with the underlying basebands,
there appears to be one peak in each of these, even though no precise correlation has
been identi�ed.
In order to achieve low variation as a function of frequency, our recommendation is to
�ag out these particularly noisy channels for the antennas in which they occur, prior
to imaging stage, but after calibration. Selecting channels whose standard deviation
exceeds the mean standard deviation in that spectral window for that antenna by 3σ
is a su�cient criterion to exclude most of the problematic noise spikes. This method is
partially redundant to the algorithms in rflag (which we did not execute as part of the
pipeline), but reduces the risk of removing real spectral lines since the noisy channels are
selected within individual antennas.

4 Appendix

4.1 Script for the identification of the high noise channels

import numpy as np

import operator

execfile('\begin/data/common/COdeep_cosmos/CASA_VLApipe_v1 .2.0/

EVLA_pipe_restore.py ')

vis=ms_active

tb.open(vis+'/ANTENNA ')

antdict=dict(enumerate(tb.getcol ("NAME").tolist ()))

tb.close()

for field in range (6,10):

f=open('deviating3sigfield '+str(field),'w')

for j in range (0,66):

for antenna in range (0,27):

ampantenna =[]

meanant =(0.0 ,0.0)

sqant =(0.0 ,0.0)

ms.open(vis)

ms.selectinit(datadescid=j)

ms.selectchannel (64,0,1,1)

ms.select({'field_id ':[ field ]})

ms.select({'antenna1 ':[ antenna ]})

data1=ms.getdata(['CORRECTED_DATA ','WEIGHT '])

flag1=ms.getdata('FLAG ')

ms.close()
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ms.open(vis)

ms.selectinit(datadescid=j)

ms.selectchannel (64,0,1,1)

ms.select({'field_id ':[ field ]})

ms.select({'antenna2 ':[ antenna ]})

data2=ms.getdata(['CORRECTED_DATA ','WEIGHT '])

flag2=ms.getdata('FLAG ')

ms.close()

for i in range (0,64):

if data1 !={}:

RR1=np.array(map(operator.mul ,data1['weight

'][0 ,:][np.where(flag1['flag '][0,i ,:]== False)

[0]], data1['corrected_data '][0,i,:][np.where(

flag1['flag '][0,i ,:]== False)[0]] ))

LL1=np.array(map(operator.mul ,data1['weight

'][3 ,:][np.where(flag1['flag '][3,i ,:]== False)

[0]], data1['corrected_data '][3,i,:][np.where(

flag1['flag '][3,i ,:]== False)[0]] ))

else:

RR1=np.array ([])

LL1=np.array ([])

if data2 !={}:

RR2=np.array(map(operator.mul ,data2['weight

'][0 ,:][np.where(flag2['flag '][0,i ,:]== False)

[0]], data2['corrected_data '][0,i,:][np.where(

flag2['flag '][0,i ,:]== False)[0]] ))

LL2=np.array(map(operator.mul ,data2['weight

'][3 ,:][np.where(flag2['flag '][3,i ,:]== False)

[0]], data2['corrected_data '][3,i,:][np.where(

flag2['flag '][3,i ,:]== False)[0]] ))

else:

RR2=np.array ([])

LL2=np.array ([])

RR=np.concatenate ((RR1 ,RR2))

LL=np.concatenate ((LL1 ,LL2))

RRampt= np.absolute(RR).std()

LLampt= np.absolute(LL).std()

ampantenna.append ((RRampt ,LLampt))

meanant=tuple(map(operator.add ,meanant ,(RRampt ,

LLampt)))

sqant=tuple(map(operator.add ,sqant ,( RRampt **2, LLampt

**2)))

meanant=tuple(map(operator.div ,meanant ,(64 ,64)))

sqant=tuple(map(operator.div ,sqant ,(64 ,64)))

stdant=tuple(map(np.sqrt ,tuple(map(operator.sub ,sqant ,

tuple(map(operator.mul ,meanant ,meanant))))))

for i in range (0,64):

if ampantenna[i][0]> meanant [0]+3* stdant [0]

or ampantenna[i][1]> meanant [1]+3*
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stdant [1]:

f.write('field=\''+str(field)+'\'

spw=\''+str(j)+':'+str(i)+'\'

antenna =\''+antdict[antenna

]+'\'\n')

f.close ()
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Figure 2.1: Calibrated amplitudes for one spectral window for one antenna, colorized by
baseline. First: a spike that only signi�cantly a�ects one channel. Second: a
two-channel spike. Third: a multiple channel spike

Figure 2.2: Same as Fig 2.1. Only the leftmost (channel 15) is selected as a spike by our
criterion because not enough datapoints are deviant in the second one; the
standard deviation of the channel is thus not high enough
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Figure 2.3: Frequency distribution for the number of antennas (x-axis) where the same
channel has high noise (> 3σ) relative to its spectral window (evaluated for
each �eld in each track) for all observations. The columns corresponding to a
noisy channel appearance in 1 antenna and 2 antennas only are o� the scale,
the values are ∼ 24000 and ∼ 2200 respectively.
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Figure 2.4: Calibrated amplitude versus time plot. Top: Amplitude as a function of time
for two channels, one with excess noise (green) and one without (blue), for a
single observing track. Bottom: σ1−σ2 and (σ1−σ2)/σ2 for the two channels
plotted above, calculated in each scan, where scans of the calibrator �eld are
blue and scans of science �elds are red.
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Figure 3.1: Frequency distribution for the number of observations (out of 46 possible;
x-axis) where the same antenna-channel pair has high noise (> 3σ) relative
to its spectral window

Figure 3.2: Spectral window distribution of the antenna-channel noise spikes.
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